Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices

Jai Hyun Park

jaihyunp@gmail.com

FHE.org - June 5, 2025

Summary

- Fast ciphertext-ciphertext matrix multiplication (CCMM)
 - 85.2 s for CCMM of 4096 × 4096 matrices in a single thread CPU
 - How? Reduce CCMM to plaintext matrix multiplications
- Fast ciphertext matrix transpose (CMT)
 - 0.76 s for CMT of a 2048 \times 2048 matrices in a single thread CPU
- Lightweight CCMM and CMT algorithms with smaller key sizes

- Matrix multiplication is central in high-performance computing
 - highly optimized libraries for basic linear algebra subprograms (BLAS)
 - Can be 10-30x faster than a naïve implementation for large matrices

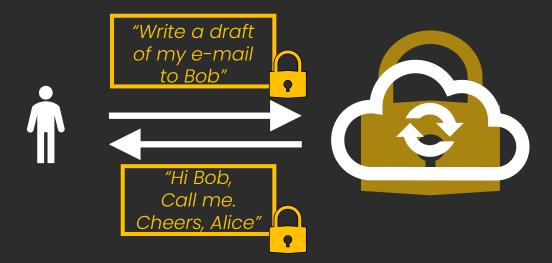
- Matrix multiplication is central in high-performance computing
 - highly optimized libraries for basic linear algebra subprograms (BLAS)
 - Can be 10-30x faster than a naïve implementation for large matrices

What about matrix multiplication on encrypted data?

- Matrix multiplication is central in high-performance computing
 - highly optimized libraries for basic linear algebra subprograms (BLAS)
 - Can be 10-30x faster than a naïve implementation for large matrices

What about matrix multiplication on encrypted data?

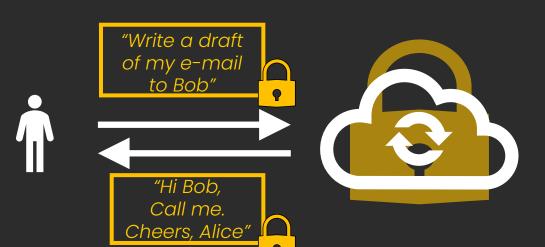
Privacy-preserving machine learning as a service



- Matrix multiplication is central in high-performance computing
 - highly optimized libraries for basic linear algebra subprograms (BLAS)
 - Can be 10-30x faster than a naïve implementation for large matrices

What about matrix multiplication on encrypted data?

Privacy-preserving machine learning as a service



- PPMM: plaintext-plaintext matrix multiplication
- PCMM: plaintext-ciphertext matrix multiplication
- CCMM: ciphertext-ciphertext matrix multiplication
- PCMMs and CCMMs with diverse dimensions
 - e.g., PCMM of dimension 128 ~ 16384 for GPT-3.5

- PPMM BLAS libraries
 - highly optimized open libraries
 - Can be 30x faster than a naïve implementation

For matrix dimension 2¹²:

PPMM (OpenBLAS)

1.47 seconds

- PPMM BLAS libraries
 - highly optimized open libraries
 - Can be 30x faster than a naïve implementation
- PCMM BCH**P**S'24
 - Reduction from PCMM to PPMM
 - Optimizations with shared-a, truncation, and others

For matrix dimension 2¹²:

PPMM (OpenBLAS)

1.47 seconds

PCMM (BCH<u>P</u>S'24)

17.1 seconds

- PPMM BLAS libraries
 - highly optimized open libraries
 - Can be 30x faster than a naïve implementation
- PCMM BCH**P**S'24
 - Reduction from PCMM to PPMM
 - Optimizations with shared-a, truncation, and others
- CCMM JKLS'18
 - cubic bit complexity
 - 0.6 seconds for matrix dimension 64

For matrix dimension 2¹²:

PPMM (OpenBLAS)

1.47 seconds

PCMM (BCH<u>P</u>S'24)

17.1 seconds

- PPMM BLAS libraries
 - highly optimized open libraries
 - Can be 30x faster than a naïve implementation
- PCMM BCH**P**S'24
 - Reduction from PCMM to PPMM
 - Optimizations with shared-a, truncation, and others
- CCMM JKLS'18
 - cubic bit complexity
 - 0.6 seconds for matrix dimension 64

For matrix dimension 2^{12} :

PPMM (OpenBLAS)

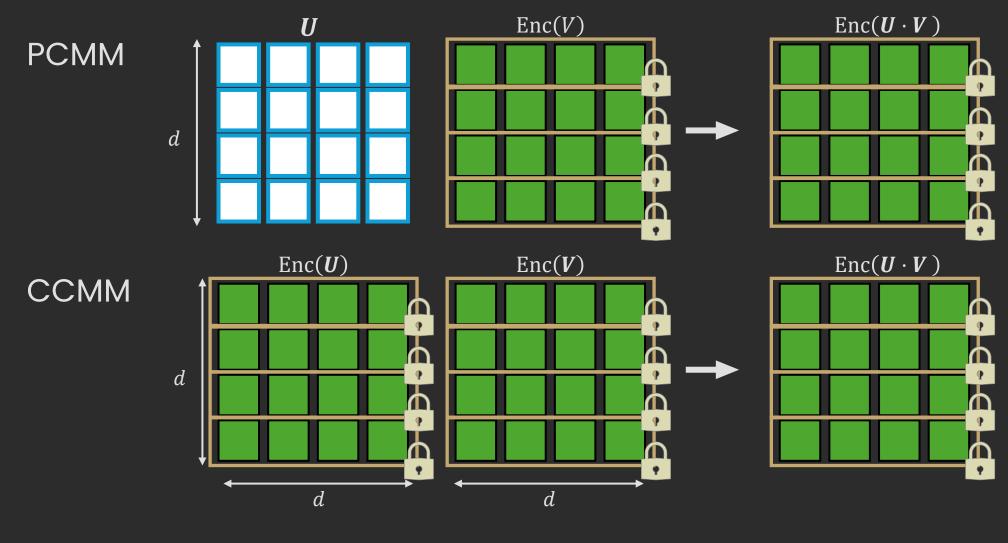
1.47 seconds

PCMM (BCH<u>P</u>S'24)

17.1 seconds

> 19 hours

PCMM and CCMM



PCMM/CCMM with CKKS

- CKKS
 - Plaintext: <u>vector</u> of real numbers
 - Native operations: // add, // mult, and rotate.

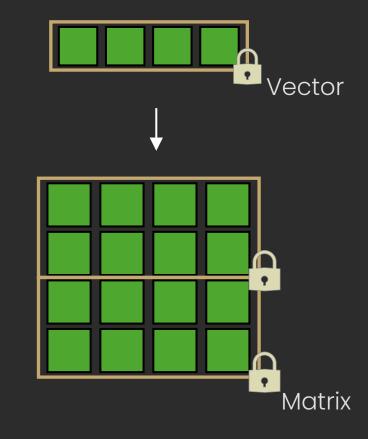
PCMM/CCMM with CKKS

- CKKS
 - Plaintext: <u>vector</u> of real numbers
 - Native operations: // add, // mult, and rotate.

PCMM/CCMM with CKKS

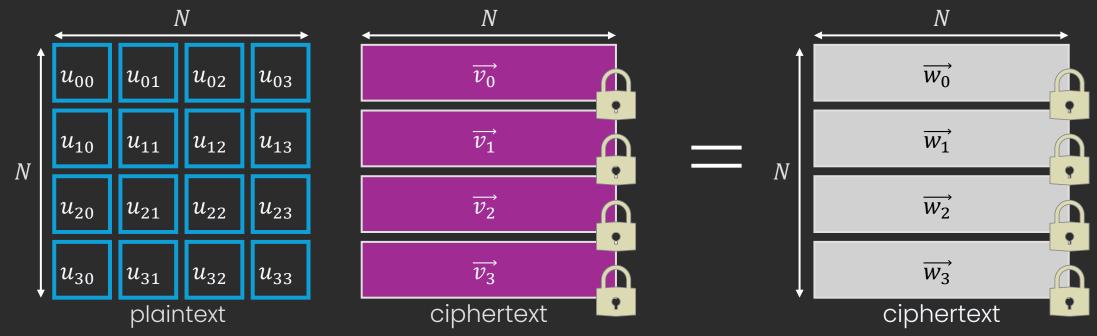
- CKKS
 - Plaintext: <u>vector</u> of real numbers
 - Native operations: // add, // mult, and rotate.

- With the native operations, PCMM requires lots of rotates.
 - For example, [JKLS18] has a cubic bit complexity, but is orders of magnitude slower than PPMM.



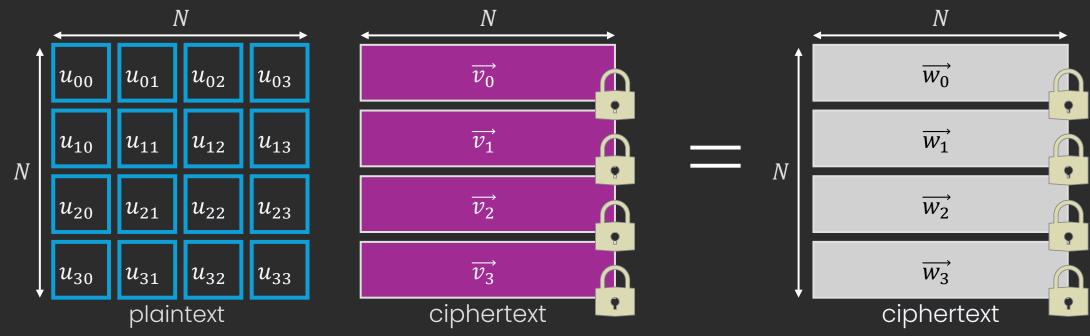
Why BLAS?

• PCMM when the matrix dimension d = N



Why BLAS?

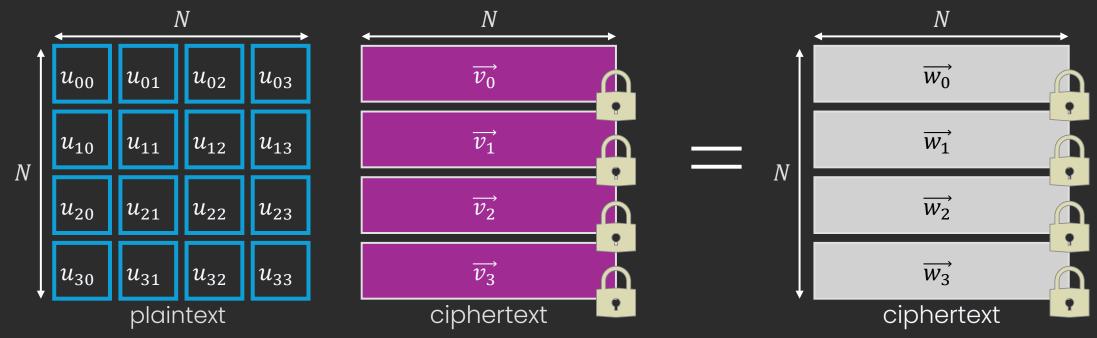
• PCMM when the matrix dimension d = N



- Linear algebra: $\overrightarrow{w_j} = u_{j0}\overrightarrow{v_0} + u_{j1}\overrightarrow{v_1} + u_{j2}\overrightarrow{v_2} + u_{j3}\overrightarrow{v_3} = \sum_i u_{ji}\overrightarrow{v_i}$
- Linear HE : $Enc(\overrightarrow{w_j}) = \sum_i u_{ji} Enc(\overrightarrow{v_i})$

Why BLAS?

• PCMM when the matrix dimension d = N



- Linear algebra: $\overrightarrow{w_j} = u_{j0}\overrightarrow{v_0} + u_{j1}\overrightarrow{v_1} + u_{j2}\overrightarrow{v_2} + u_{j3}\overrightarrow{v_3} = \sum_i u_{ji}\overrightarrow{v_i}$
- Linear HE : $Enc(\overrightarrow{w_j}) = \sum_i u_{ji} Enc(\overrightarrow{v_i})$

> 2500 seconds for $N = 2^{13}$

Q. How to utilize PPMM BLAS libraries?

Q. How to utilize PPMM BLAS libraries?

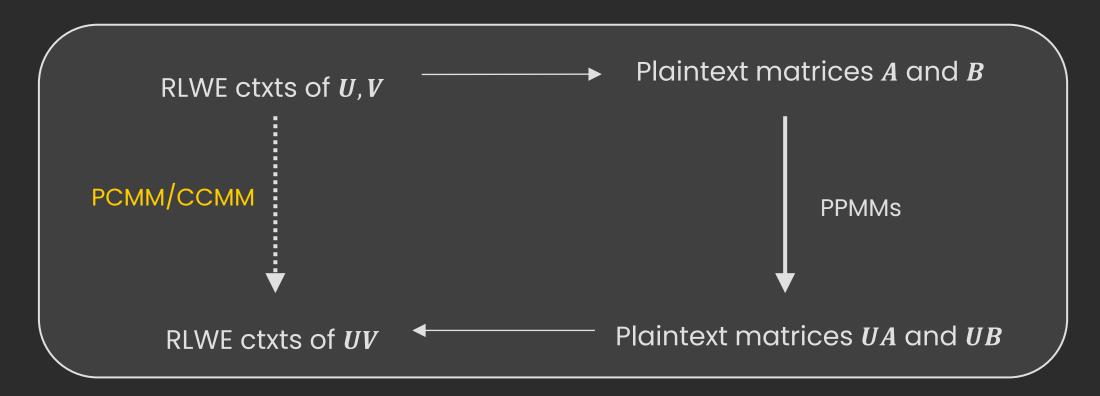
A. Reduction from PCMM/CCMM to PPMM

Q. How to utilize PPMM BLAS libraries?

A. Reduction from PCMM/CCMM to PPMM

Q. How to utilize PPMM BLAS libraries?

A. Reduction from PCMM/CCMM to PPMM

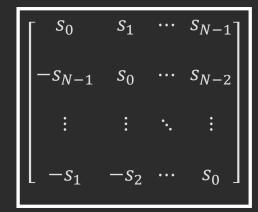


• In the ring $\mathbb{Z}_{Q}[X]/(X^{N}+1)$, an RLWE ciphertext $(a,b=-a\cdot s+m)$ is:

• In the ring $\mathbb{Z}_{Q}[X]/(X^{N}+1)$, an RLWE ciphertext $(a,b=-a\cdot s+m)$ is:

• In the ring $\mathbb{Z}_{Q}[X]/(X^{N}+1)$, an RLWE ciphertext $(a,b=-a\cdot s+m)$ is:

$$\begin{bmatrix} a_0 & a_1 & \cdots & a_{N-1} \end{bmatrix}$$



 $\checkmark a_i, b_i, s_i, m_i$ are coeffs of a, b, s, m

Toep(s)

• In the ring $\mathbb{Z}_{Q}[X]/(X^{N}+1)$, an RLWE ciphertext $(a,b=-a\cdot s+m)$ is:

$$\begin{bmatrix} a_0 & a_1 & \cdots & a_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} s_0 & s_1 & \cdots & s_{N-1} \\ -s_{N-1} & s_0 & \cdots & s_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ -s_1 & -s_2 & \cdots & s_0 \end{bmatrix}$$

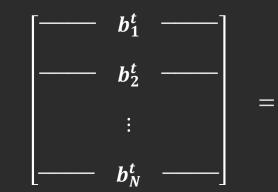
 $\checkmark a_i, b_i, s_i, m_i$ are coeffs of a, b, s, m

Toep(s)

• N RLWE ciphertexts are:

$$egin{bmatrix} ------ & a_1^t & ----- \ ----- & a_2^t & ----- \ & dots & dots \ ---- & a_N^t & ---- \end{bmatrix}$$

$$\begin{bmatrix} s_0 & s_1 & \cdots & s_{N-1} \\ -s_{N-1} & s_0 & \cdots & s_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ -s_1 & -s_2 & \cdots & s_0 \end{bmatrix}$$



$$egin{bmatrix} ----- & m_1^t & ---- \ ----- & m_2^t & ---- \ & dots & dots \ ---- & m_N^t & ---- \end{bmatrix}$$

• In the ring $\mathbb{Z}_{Q}[X]/(X^{N}+1)$, an RLWE ciphertext $(a,b=-a\cdot s+m)$ is:

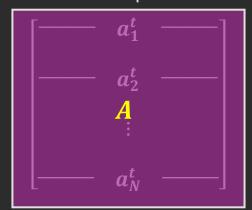
$$\begin{bmatrix} a_0 & a_1 & \cdots & a_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} s_0 & s_1 & \cdots & s_{N-1} \\ -s_{N-1} & s_0 & \cdots & s_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ -s_1 & -s_2 & \cdots & s_0 \end{bmatrix}$$

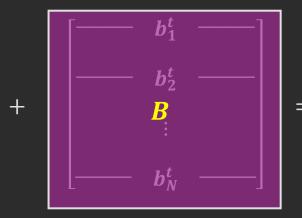
 $\checkmark a_i, b_i, s_i, m_i$ are coeffs of a, b, s, m

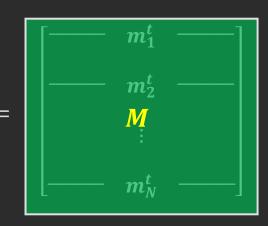
Toep(s)

• N RLWE ciphertexts are:



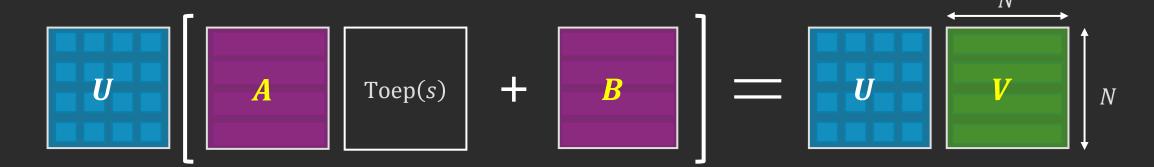
$$\begin{bmatrix} s_0 & s_1 & \cdots & s_{N-1} \\ -s_{N-1} & s_0 & \cdots & s_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ -s_1 & -s_2 & \cdots & s_0 \end{bmatrix}$$



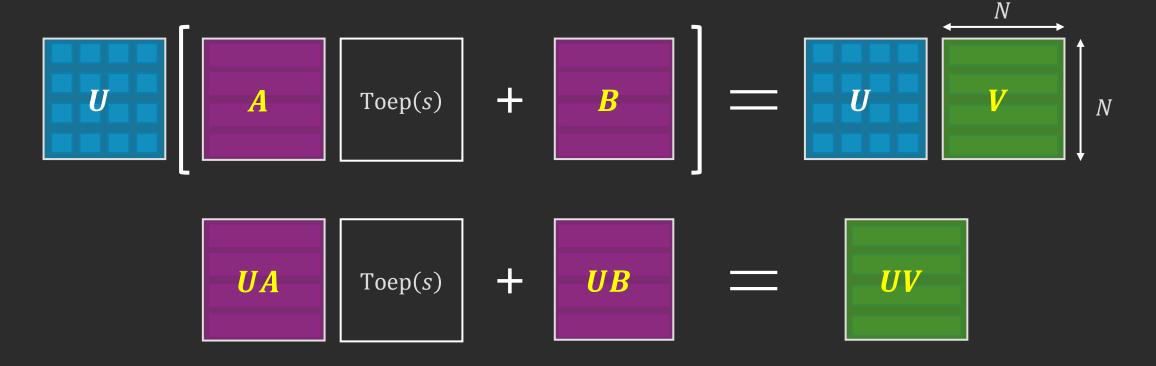


PCMM \leq PPMMs (BCHPS'24, LZ'22)

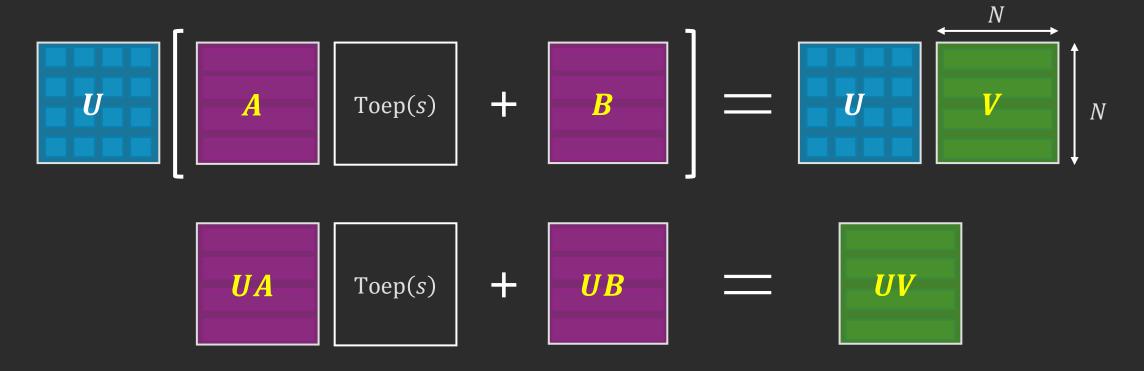
PCMM \leq PPMMs (BCHPS'24, LZ'22)



PCMM \leq PPMMs (BCHPS'24, LZ'22)



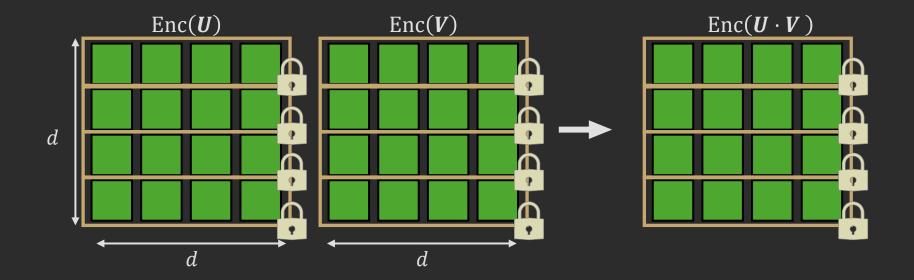
$PCMM \le PPMMs (BCHPS'24, LZ'22)$



- ❖ $N \times N \times N$ PCMM $\leq two N \times N \times N$ PPMMs modulo Q
- \clubsuit We use fast PPMM BLAS libraries for $N \times N \times N$ PCMM
- ❖ For PCMMs with other dimensions, see BCHPS'24

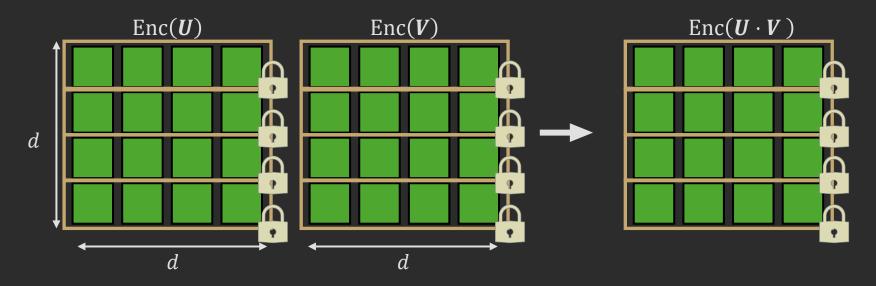
ζ

CCMM for Large Matrices



Jai Hyun Park ______10

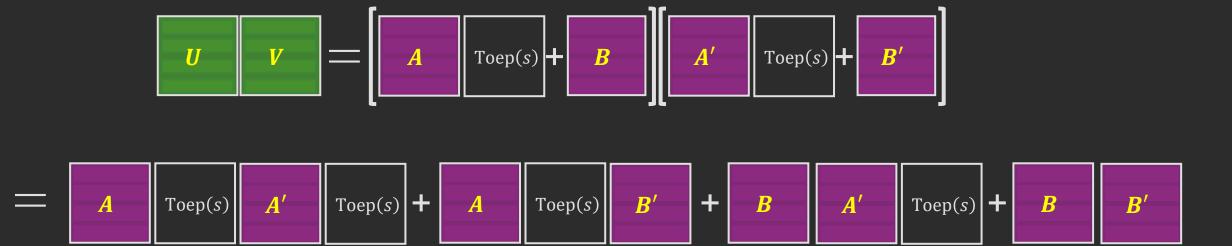
CCMM for Large Matrices



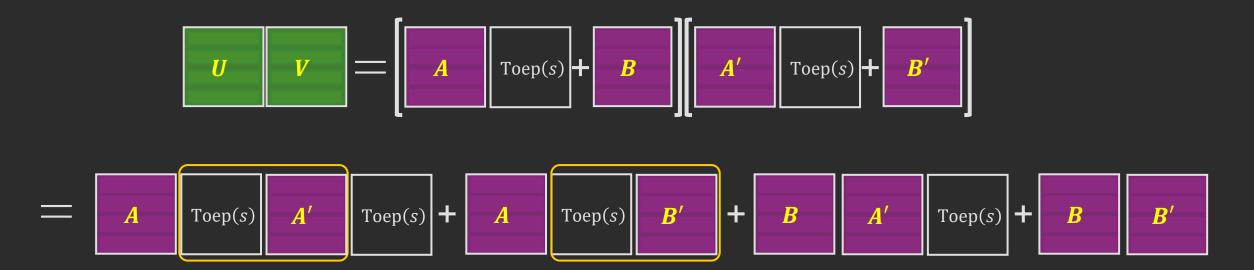
- CCMM with RLWE-based (fully) homomorphic encryption schemes
 - Compatibility with the other machine learning tasks
 - High efficiency

CCMM?

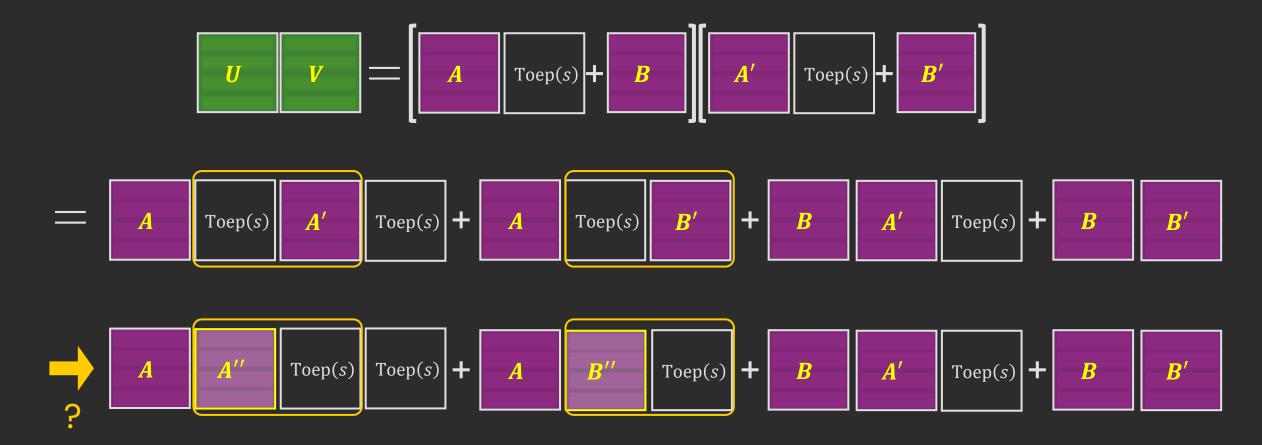
CCMM?



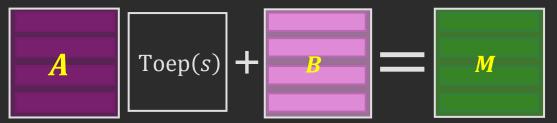
CCMM?



CCMM?

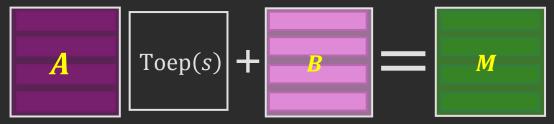


A.Toep(s) vs. Toep(s).A

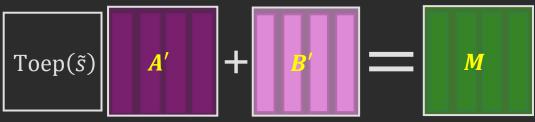


Encrypting each row: $a_i s + b_i = m_i$

A.Toep(s) vs. Toep(s).A

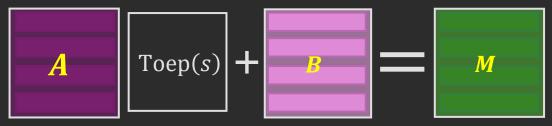


Encrypting each row: $a_i s + b_i = m_i$

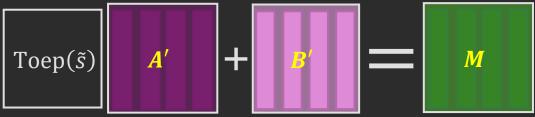


Encrypting each column: $a_j s + b_j = m'_j$

A.Toep(s) vs. Toep(s).A



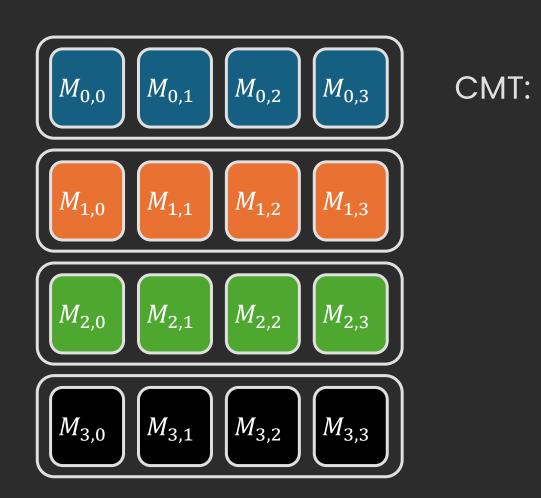
Encrypting each row: $a_i s + b_i = m_i$



Encrypting each column: $a_j s + b_j = m'_j$

- ✓ N RLWE ciphertexts to encrypt
 N × N matrix M
 - Row: $A \cdot \text{Toep}(s) + B = M$
 - Column: $Toep(\tilde{s}) \cdot A' + B' = M$

Ciphertext Matrix Transpose (CMT)



N ciphertexts

$$m_i(X) = \sum_{j \in [N]} M_{i,j} X^j$$

Ciphertext Matrix Transpose (CMT)

CMT:

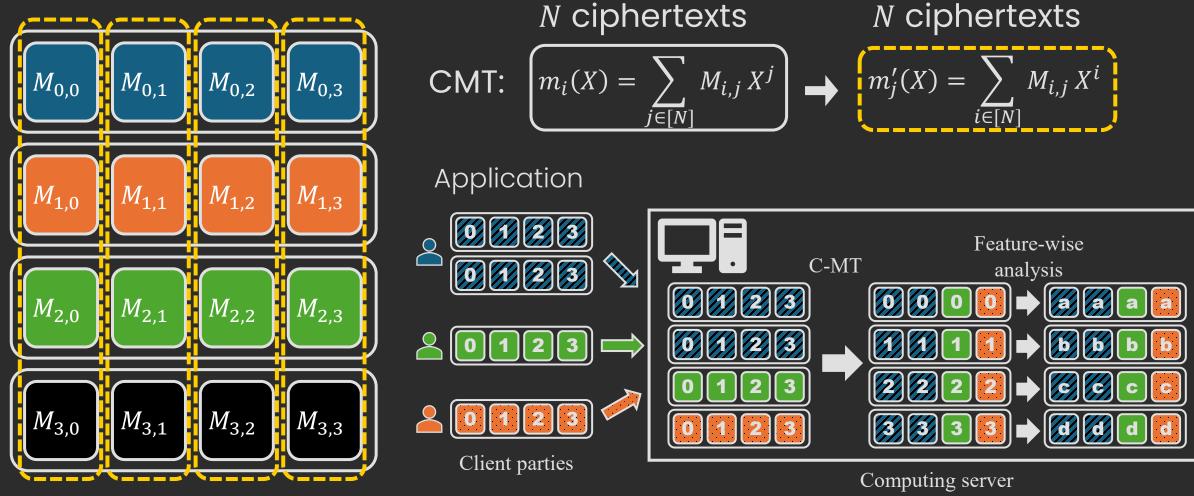
N ciphertexts

 $m_i(X) = \sum_{j \in [N]} M_{i,j} X^j$

N ciphertexts

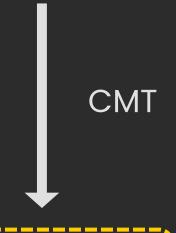
$$\longrightarrow m'_j(X) = \sum_{i \in [N]} M_{i,j} X^i$$

Ciphertext Matrix Transpose (CMT)



N ciphertexts

$$m_i(X) = \sum_{j \in [N]} M_{i,j} X^j$$



$$m'_j(X) = \sum_{i \in [N]} M_{i,j} X^i$$

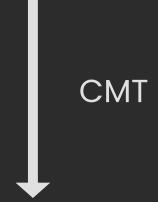
N ciphertexts

Trace

$$\forall i, j, \qquad M_{i,j} = N^{-1} \quad \cdot \quad \sum_{\sigma \in Aut} \sigma(m_i(X) \cdot X^{-j})$$

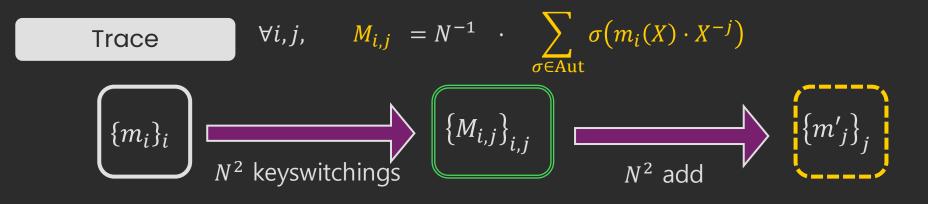
N ciphertexts

$$\left[m_i(X) = \sum_{j \in [N]} M_{i,j} X^j\right]$$



$$m'_j(X) = \sum_{i \in [N]} M_{i,j} X^i$$

N ciphertexts



N ciphertexts

$$m_i(X) = \sum_{j \in [N]} M_{i,j} X^j$$

$$m'_{j}(X) = \sum_{i \in [N]} M_{i,j} X^{i}$$

N ciphertexts

Trace

$$\forall i, j, \qquad M_{i,j} = N^{-1} \quad \cdot \quad \sum_{\sigma \in \text{Aut}} \sigma(m_i(X) \cdot X^{-j})$$

$$\forall j, \qquad m'_j(X) = N^{-1} \cdot \sum_{i \in [N]} \sum_{\sigma \in Aut} \sigma \left(X^{-j} \cdot m_i(X) \right) \cdot X^i$$

N ciphertexts

$$m_i(X) = \sum_{j \in [N]} M_{i,j} X^j$$

$$m'_j(X) = \sum_{i \in [N]} M_{i,j} X^i$$

N ciphertexts

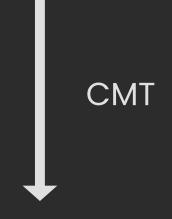
Trace

$$\forall i, j, \qquad M_{i,j} = N^{-1} \quad \cdot \quad \sum_{\sigma \in \text{Aut}} \sigma(m_i(X) \cdot X^{-j})$$

$$\forall j, \qquad m'_j(X) = N^{-1} \cdot \sum_{i \in]N]} \sum_{\sigma \in \text{Aut}} \sigma \left(X^{-j} \cdot m_i(X) \right) \cdot X^i$$
$$= N^{-1} \cdot \sum_{\sigma \in \text{Aut}} \sum_{i \in [N]} \sigma \left(X^{-j} \right) \cdot \sigma \left(m_i(X) \right) \cdot X^i$$

N ciphertexts

$$\left[m_i(X) = \sum_{j \in [N]} M_{i,j} X^j\right]$$



$$m'_j(X) = \sum_{i \in [N]} M_{i,j} X^i$$

N ciphertexts

Trace

$$\forall i, j, \qquad M_{i,j} = N^{-1} \quad \cdot \quad \sum_{\sigma \in \mathrm{Aut}} \sigma \big(m_i(X) \cdot X^{-j} \big)$$

$$\forall j, \qquad m'_{j}(X) = N^{-1} \cdot \sum_{i \in]N]} \sum_{\sigma \in \text{Aut}} \sigma \left(X^{-j} \cdot m_{i}(X) \right) \cdot X^{i}$$

$$= N^{-1} \cdot \sum_{\sigma \in \text{Aut}} \sum_{i \in [N]} \sigma \left(X^{-j} \right) \cdot \sigma \left(m_{i}(X) \right) \cdot X^{i}$$

$$= N^{-1} \cdot \sum_{\sigma \in \text{Aut}} \sigma \left(X^{-j} \right) \cdot \sigma \left(\sum_{i \in [N]} m_{i}(X) \cdot \sigma^{-1} \left(X^{i} \right) \right)$$

N ciphertexts

$$\left[m_i(X) = \sum_{j \in [N]} M_{i,j} X^j\right]$$

$$m'_j(X) = \sum_{i \in [N]} M_{i,j} X^i$$

N ciphertexts

 $\forall j$,

CMT with N keyswitchings

Trace

$$\forall i, j, \qquad M_{i,j} = N^{-1} \quad \cdot \quad \sum_{\sigma \in Aut} \sigma(m_i(X) \cdot X^{-j})$$

Sharing automorphisms

$$m'_{j}(X) = N^{-1} \cdot \sum_{i \in]N]} \sum_{\sigma \in Aut} \sigma \left(X^{-j} \cdot m_{i}(X) \right) \cdot X^{i}$$

$$= N^{-1} \cdot \sum_{\sigma \in Aut} \sum_{i \in [N]} \sigma \left(X^{-j} \right) \cdot \sigma \left(m_{i}(X) \right) \cdot X^{i}$$

$$= N^{-1} \cdot \sum_{\sigma \in Aut} \sigma \left(X^{-j} \right) \left[\sigma \left(\sum_{i \in [N]} m_{i}(X) \cdot \sigma^{-1}(X^{i}) \right) \right]$$

N ciphertexts

$$\left[m_i(X) = \sum_{j \in [N]} M_{i,j} X^j\right]$$

$$m'_{j}(X) = \sum_{i \in [N]} M_{i,j} X^{i}$$

N ciphertexts

Trace

$$\forall i, j, \qquad M_{i,j} = N^{-1} \quad \cdot \quad \sum_{\sigma \in Aut} \sigma(m_i(X) \cdot X^{-j})$$

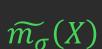
Sharing automorphisms

$$\forall j$$
,

$$m'_{j}(X) = N^{-1} \cdot \sum_{i \in [N]} \sum_{\sigma \in Aut} \sigma \left(X^{-j} \cdot m_{i}(X) \right) \cdot X^{i}$$

$$= N^{-1} \cdot \sum_{\sigma \in \text{Aut}} \sum_{i \in [N]} \sigma(X^{-j}) \cdot \sigma(m_i(X)) \cdot X^i$$

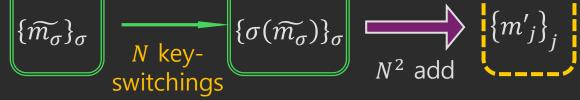
$$= N^{-1} \cdot \sum_{\sigma \in \text{Aut}} \sigma(X^{-j}) \left(\sigma \left(\sum_{i \in [N]} m_i(X) \cdot \sigma^{-1}(X^i) \right) \right)$$



$$m'_j(X) = \sum_{i \in [N]} M_{i,j} X^i$$

N ciphertexts

N ciphertexts



$$\checkmark \widetilde{m_{\sigma}}(X) = \sum_{i} \sigma^{-1}(X^{i}) \cdot m_{i}$$

$$\checkmark m'_{j}(X) = \sum_{\sigma} \sigma(X^{-j}) \cdot \sigma(\widetilde{m_{\sigma}})$$

$$\checkmark \widetilde{m_{\sigma}}(X) = \sum_{i} \sigma^{-1}(X^{i}) \cdot m_{i}$$

$$\checkmark m'_{j}(X) = \sum_{\sigma} \sigma(X^{-j}) \cdot \sigma(\widetilde{m_{\sigma}})$$

$$\operatorname{Tweak} \big(\{ m_i \}_{i \in [n]} \big) \ \mapsto \left\{ \sum_{i \in [n]} X^{\frac{2N}{n}ij} \cdot m_i \right\}_{j \in [n]}$$

N is the ring degree of RLWE

$$\checkmark \ \widetilde{m_{\sigma}}(X) = \sum_{i} \sigma^{-1}(X^{i}) \cdot m_{i}$$

$$\checkmark \ m'_{j}(X) = \sum_{\sigma} \sigma(X^{-j}) \cdot \sigma(\widetilde{m_{\sigma}})$$

Tweak
$$(\{m_i\}_{i\in[n]})\mapsto \left\{\sum_{i\in[n]}X^{\frac{2N}{n}ij}\cdot m_i\right\}_{j\in[n]}$$

N is the ring degree of RLWE

- Tweak $(\{m_i\}_{i\in[n]})$ can be done with
 - Tweak $(\{m_{2i}\}_{i\in[n/2]})$
 - Tweak $(\{m_{2i+1}\}_{i \in [n/2]})$
 - *n* ring additions

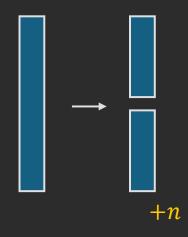
$$\checkmark \ \widetilde{m_{\sigma}}(X) = \sum_{i} \sigma^{-1}(X^{i}) \cdot m_{i}$$

$$\checkmark \ m'_{j}(X) = \sum_{\sigma} \sigma(X^{-j}) \cdot \sigma(\widetilde{m_{\sigma}})$$

$$\mathsf{Tweak}\big(\{m_i\}_{i\in[n]}\big) \mapsto \left\{\sum_{i\in[n]} X^{\frac{2N}{n}ij} \cdot m_i\right\}_{j\in[n]}$$

N is the ring degree of RLWE

- Tweak $(\{m_i\}_{i\in[n]})$ can be done with
 - Tweak $(\{m_{2i}\}_{i\in[n/2]})$
 - Tweak $(\{m_{2i+1}\}_{i \in [n/2]})$
 - *n* ring additions



15

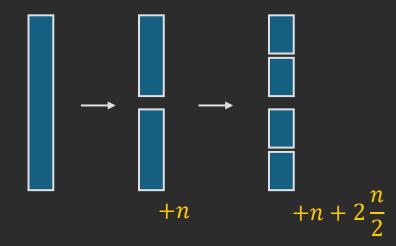
$$\checkmark \ \widetilde{m_{\sigma}}(X) = \sum_{i} \sigma^{-1}(X^{i}) \cdot m_{i}$$

$$\checkmark \ m'_{j}(X) = \sum_{\sigma} \sigma(X^{-j}) \cdot \sigma(\widetilde{m_{\sigma}})$$

$$\operatorname{Tweak}(\{m_i\}_{i\in[n]}) \mapsto \left\{ \sum_{i\in[n]} X^{\frac{2N}{n}ij} \cdot m_i \right\}_{j\in[n]}$$

N is the ring degree of RLWE

- Tweak $(\{m_i\}_{i\in[n]})$ can be done with
 - Tweak $(\{m_{2i}\}_{i\in[n/2]})$
 - Tweak $(\{m_{2i+1}\}_{i \in [n/2]})$
 - *n* ring additions



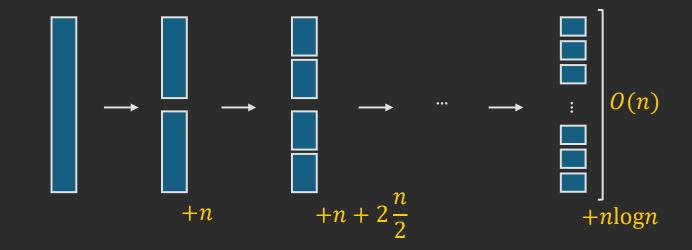
$$\checkmark \ \widetilde{m_{\sigma}}(X) = \sum_{i} \sigma^{-1}(X^{i}) \cdot m_{i}$$

$$\checkmark \ m'_{j}(X) = \sum_{\sigma} \sigma(X^{-j}) \cdot \sigma(\widetilde{m_{\sigma}})$$

$$\operatorname{Tweak} \big(\{ m_i \}_{i \in [n]} \big) \mapsto \left\{ \sum_{i \in [n]} X^{\frac{2N}{n}ij} \cdot m_i \right\}_{j \in [n]}$$

N is the ring degree of RLWE

- Tweak $(\{m_i\}_{i\in[n]})$ can be done with
 - Tweak $(\{m_{2i}\}_{i\in[n/2]})$
 - Tweak $(\{m_{2i+1}\}_{i \in [n/2]})$
 - *n* ring additions



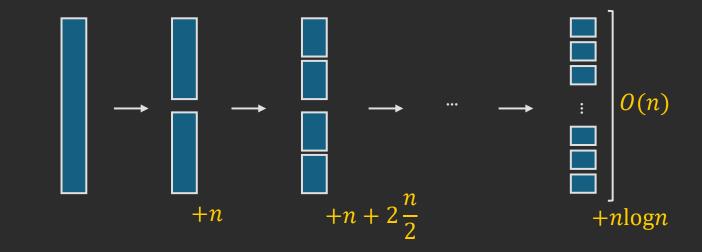
$$\checkmark \ \widetilde{m_{\sigma}}(X) = \sum_{i} \sigma^{-1}(X^{i}) \cdot m_{i}$$

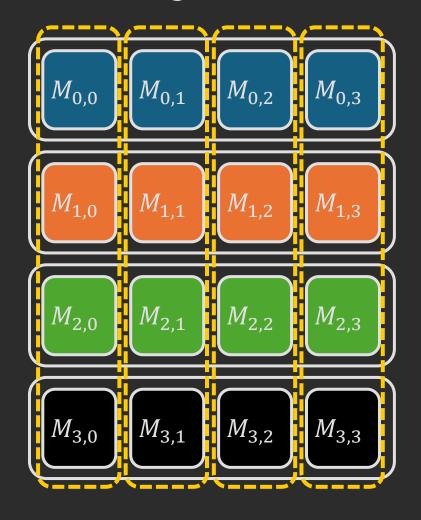
$$\checkmark \ m'_{j}(X) = \sum_{\sigma} \sigma(X^{-j}) \cdot \sigma(\widetilde{m_{\sigma}})$$

Tweak
$$(\{m_i\}_{i\in[n]})\mapsto \left\{\sum_{i\in[n]}X^{\frac{2N}{n}ij}\cdot m_i\right\}_{j\in[n]}$$

N is the ring degree of RLWE

- Tweak $(\{m_i\}_{i\in[n]})$ can be done with
 - Tweak $(\{m_{2i}\}_{i\in[n/2]})$
 - Tweak $(\{m_{2i+1}\}_{i \in [n/2]})$
 - *n* ring additions
- ightharpoonup The cost of Tweak $(\{m_i\}_{i\in[n]})$ is $Nn\log n$

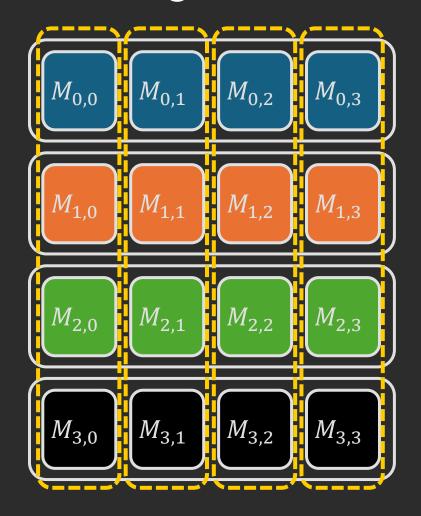


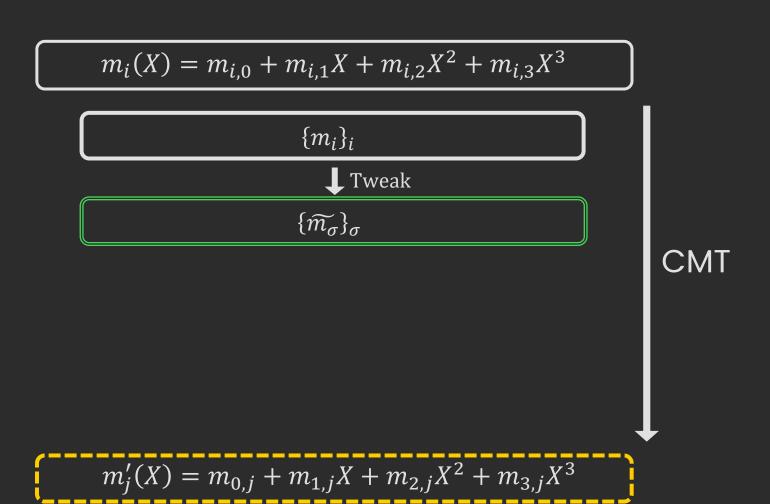


$$m_i(X) = m_{i,0} + m_{i,1}X + m_{i,2}X^2 + m_{i,3}X^3$$

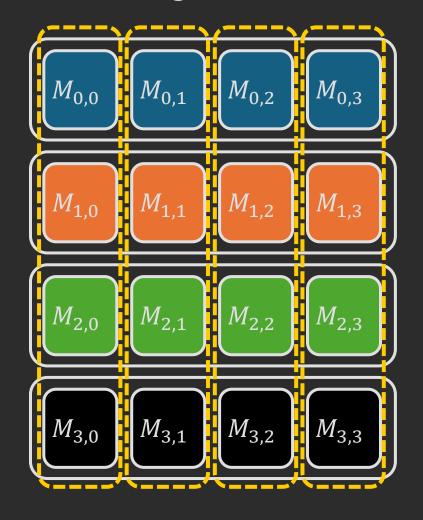
CMT

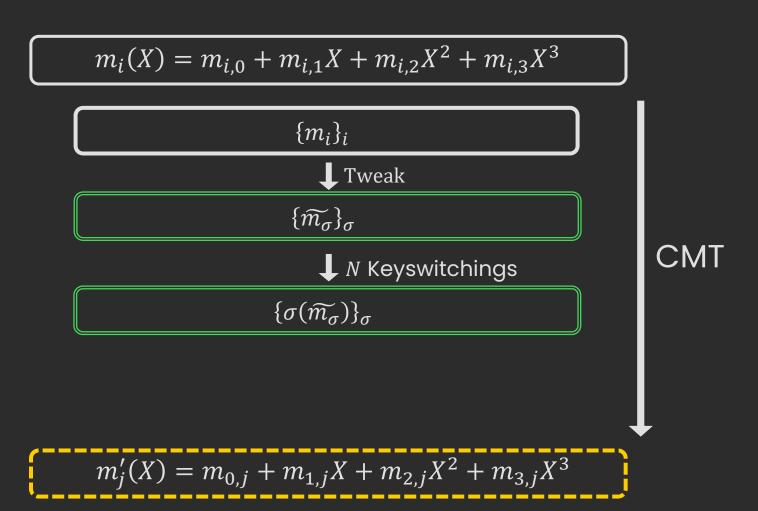
$$m'_{j}(X) = m_{0,j} + m_{1,j}X + m_{2,j}X^{2} + m_{3,j}X^{3}$$

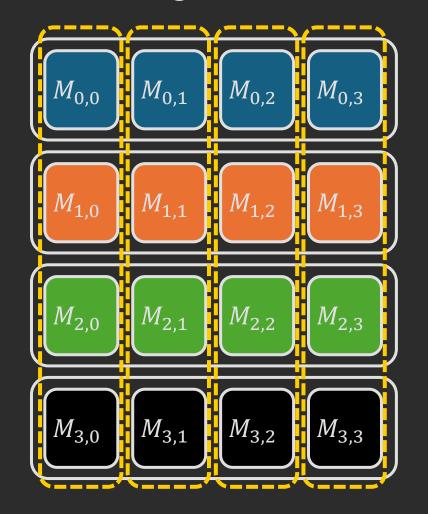


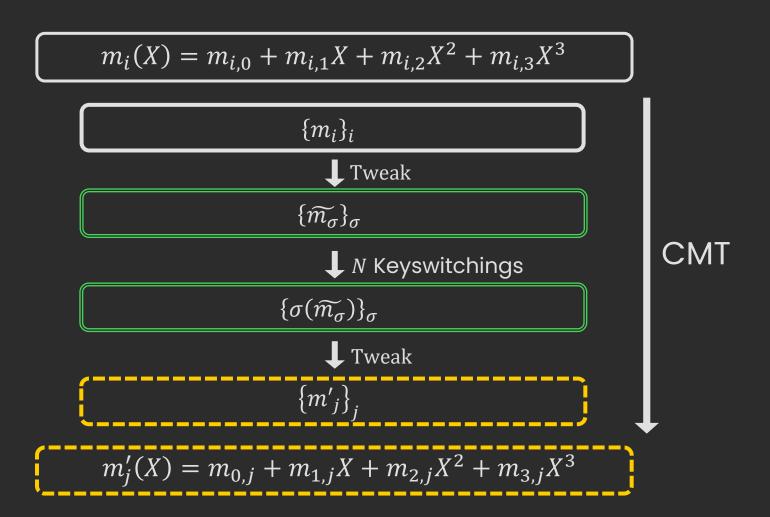


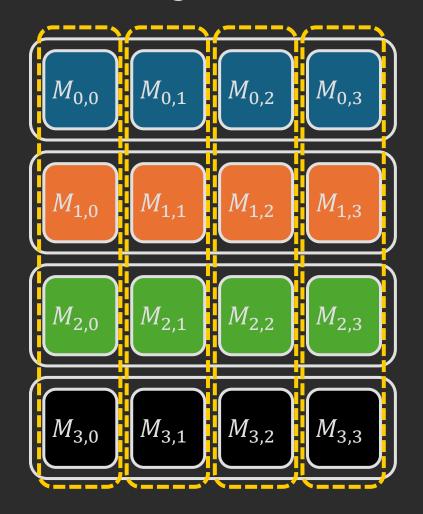
](

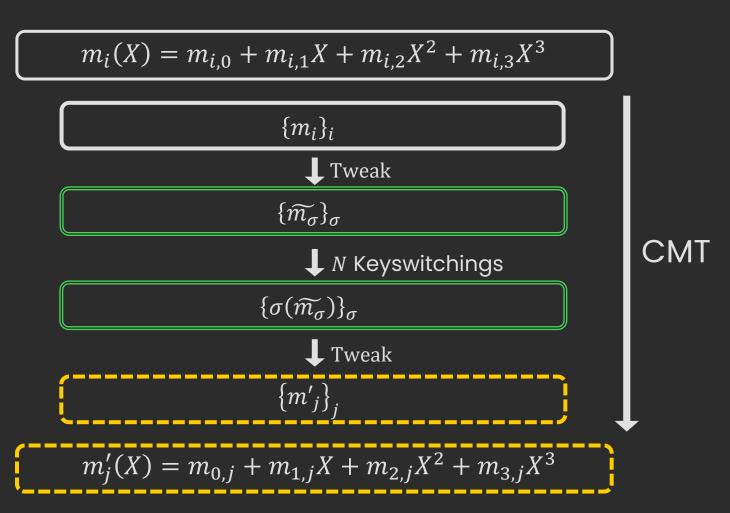




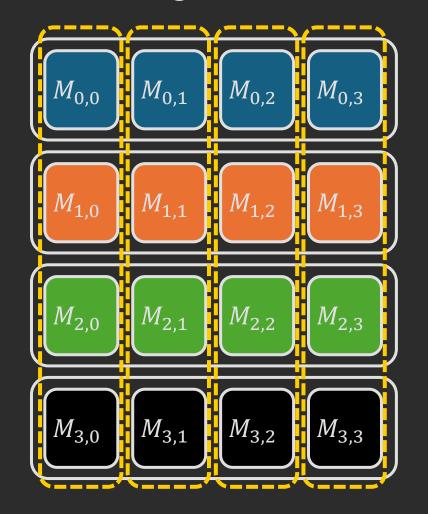


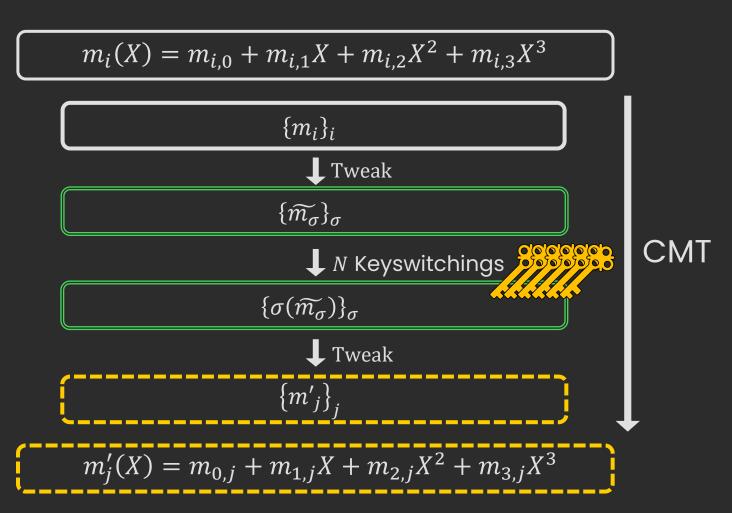






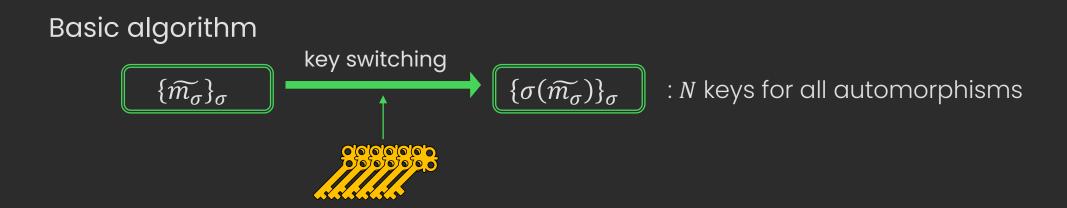
 $ilde{\phi} \tilde{O}(N^2)$ operations





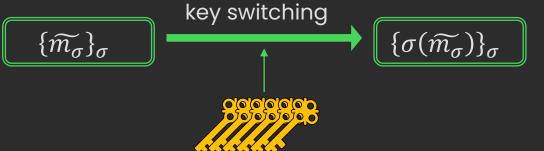
 $\diamond \tilde{o}(N^2)$ operations

Lightweight CMT Algorithm



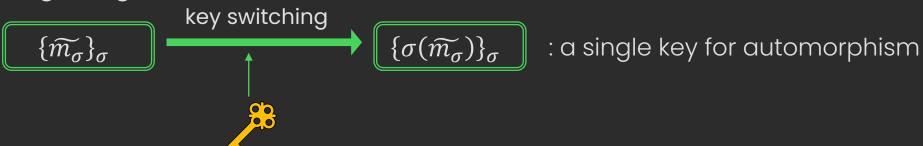
Lightweight CMT Algorithm

Basic algorithm



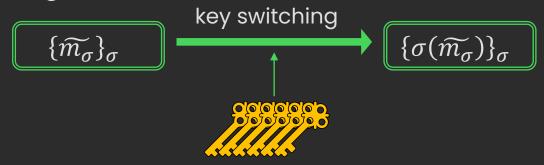
: N keys for all automorphisms

Lightweight algorithm



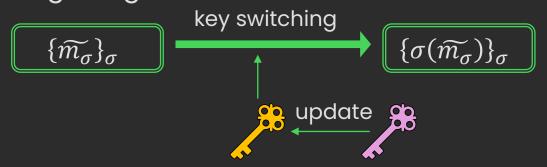
Lightweight CMT Algorithm

Basic algorithm



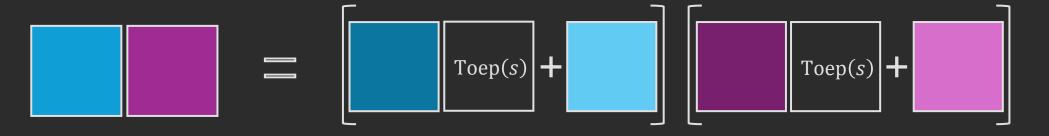
: N keys for all automorphisms

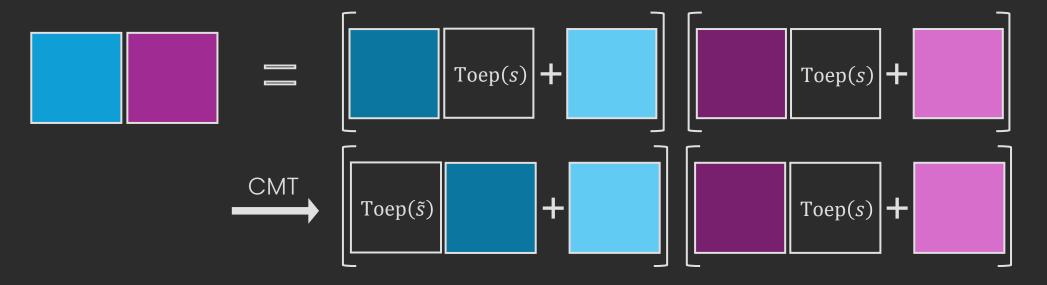
Lightweight algorithm

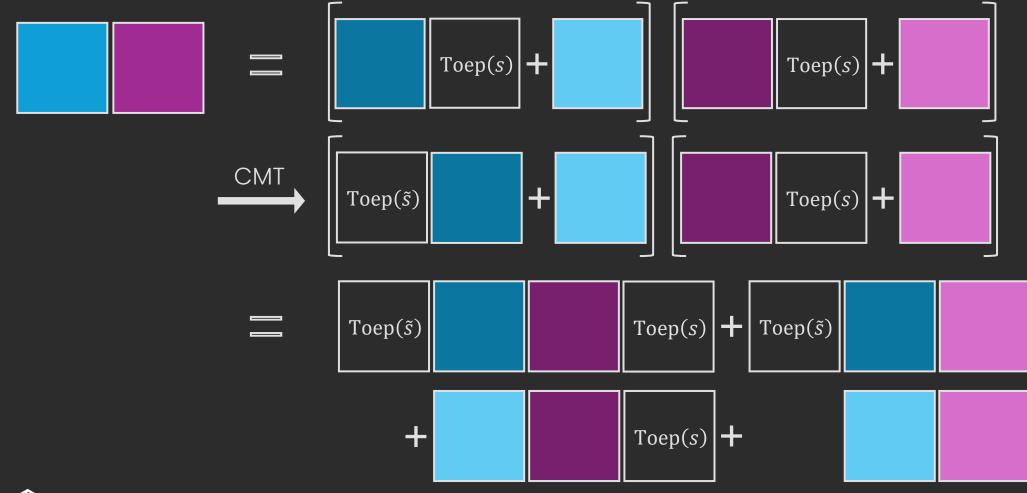


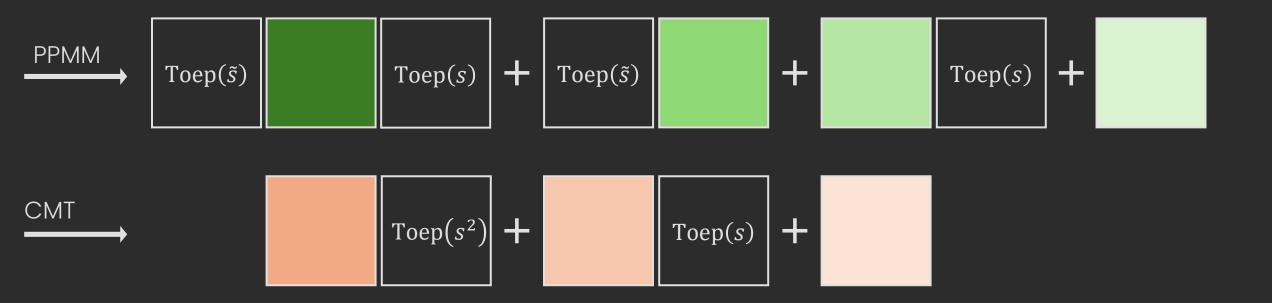
: a single key for automorphism

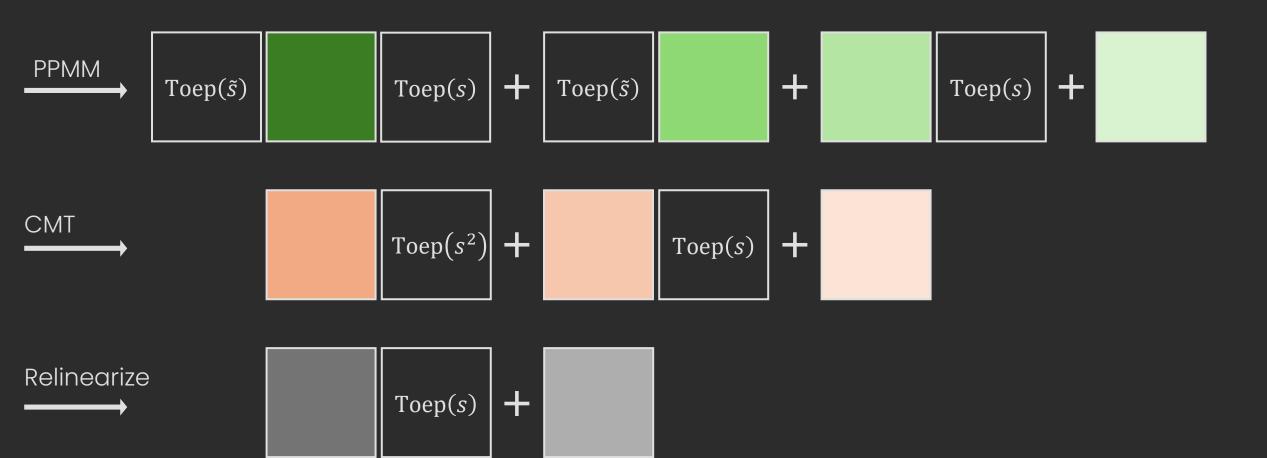
+ two master keys for the "key updates"

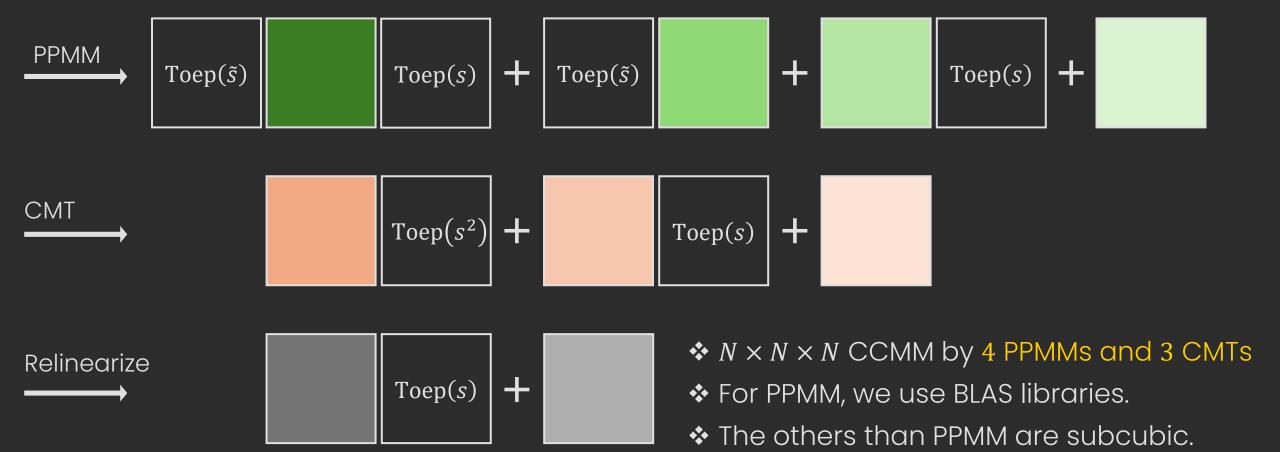












Experimental Results on CCMM

Algorithm	Matrix Dimension	$(\log N, \log Q)$	CMTs	PPMMs	Relin. & Resc.	Total (s)	Prec. (bit)	Key size (MB)
Basic	4096	(12, 36 + 28)	25.5	57.1	2.58	85.2	18.7	436
Basic	8192	(13,38+28)	104	481	11.8	596	18.5	1960
Lightweight	8192	(13,38+28)	186	474	11.8	672	18.5	1.57

All experiments are measured on Intel® Xeon® Gold 6242 CPU at 2.80GHz with a single-thread All parameters are 128-bit secure

HEaaN library for HE, FLINT library (based on OpenBLAS) for PPMM

Experimental Results on CMT

Algorithm	Matrix Dimension	$(\log N, \log Q)$	Latency (s)	Prec. (bit)	Key size (MB)
Basic	2048	(11, 26)	0.764	10.7	27.3
Basic	4096	(12, 28)	3.04	16.3	134
Lightweight	4096	(12, 28)	4.92	14.2	0.246

All experiments are measured on Intel® Xeon® Gold 6242 CPU at 2.80GHz with a single-thread All parameters are 128-bit secure

HEaaN library for HE

Follow-up Works

- BCHPS'25. "Encrypted Linear Algebra with BLAS" arxiv/2503.16080
 - CC-MM / PC-MM / CC-Mv / PC-Mv with preprocessing using GSW
 - Flexible dimensional CC-MM and PC-MM
- Gentry. "Reducing Encrypted Matrix Multiplication to Plaintext Matrix Multiplication"
 Presented at FHE.org conference 2025
 - C-MT using multi-variate polynomials
 - No published paper or experimental results available yet

- Fast CCMM
 - Leverage efficiency of BLAS libraries

- Fast CCMM
 - Leverage efficiency of BLAS libraries
- Fast CMT
 - Useful beyond being as a tool for CCMM

- Fast CCMM
 - Leverage efficiency of BLAS libraries
- Fast CMT
 - Useful beyond being as a tool for CCMM
- Lightweight algorithms
 - CCMM with keys less than 2 MB

- Fast CCMM
 - Leverage efficiency of BLAS libraries
- Fast CMT
 - Useful beyond being as a tool for CCMM
- Lightweight algorithms
 - CCMM with keys less than 2 MB

For matrix dimension 2¹²:

PPMM (OpenBLAS)

1.47 seconds

PCMM (BCH<u>P</u>S'24)

17.1 seconds

CCMM (this work)

85.2 seconds

- Fast CCMM
 - Leverage efficiency of BLAS libraries
- Fast CMT
 - Useful beyond being as a tool for CCMM
- Lightweight algorithms
 - CCMM with keys less than 2 MB

eprint: 2025/448 Thank you!

For matrix dimension 2¹²:

PPMM (OpenBLAS)

1.47 seconds

PCMM (BCH<u>P</u>S'24)

17.1 seconds

CCMM (this work)

85.2 seconds

References

[Park'25] J. H. Park. "Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Matrices." Eurocrypt 2025

[BCHPS'24] Y. Bae, J. H. Cheon, G. Hanrot, <u>J. H. Park</u>, D. Stehlé. "Plaintext-Ciphertext Matrix Multiplication and FHE Bootstrapping: Fast and Fused." Crypto 2024

[BCH<u>P</u>S'25] Y. Bae, J. H. Cheon, G. Hanrot, <u>J. H. Park</u>, D. Stehlé. *"Encrypted Linear Algebra with BLAS."* arxiv, 2025

[JKLS'18] X. Jiang, M. Kim, K. Lauter, Y. Song. "Secure Outsourced Matrix Computation and Application to Neural Networks." CCS 2018

[LZ'22] J. Liu, L. F. Zhang. "Privacy-preserving and publicly verifiable matrix multiplication." IEEE Trans. on Services Computing, 2022

